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Hysteretic photochromic switching 
of Eu-Mg defects in GaN links the 
shallow transient and deep ground 
states of the Mg acceptor
A. K. Singh1, K. P. O’Donnell1, P. R. Edwards1, K. Lorenz2, M. J. Kappers3 & M. Boćkowski4

Although p-type activation of GaN by Mg underpins a mature commercial technology, the nature of 
the Mg acceptor in GaN is still controversial. Here, we use implanted Eu as a ‘spectator ion’ to probe the 
lattice location of Mg in doubly doped GaN(Mg):Eu. Photoluminescence spectroscopy of this material 
exemplifies hysteretic photochromic switching (HPS) between two configurations, Eu0 and Eu1(Mg), of 
the same Eu-Mg defect, with a hyperbolic time dependence on ‘switchdown’ from Eu0 to Eu1(Mg). The 
sample temperature and the incident light intensity at 355 nm tune the characteristic switching time 
over several orders of magnitude, from less than a second at 12.5 K, ~100 mW/cm2 to (an estimated) 
several hours at 50 K, 1 mW/cm2. Linking the distinct Eu-Mg defect configurations with the shallow 
transient and deep ground states of the Mg acceptor in the Lany-Zunger model, we determine the 
energy barrier between the states to be 27.7(4) meV, in good agreement with the predictions of theory. 
The experimental results further suggest that at low temperatures holes in deep ground states are 
localized on N atoms axially bonded to Mg acceptors.

The achievement of p-type doping of GaN by Mg triggered the development of UV and blue light emitting and 
laser diodes1–3. Remarkably, GaN:Mg is one of the very few host-dopant combinations of a p-type wide-gap sem-
iconductor that has matured into a commercial technology. Despite this technological success, the physics of the 
Mg acceptor states in GaN is still not settled4–13. Employing a Koopmans corrected density functional method, 
Lany and Zunger (L-Z, hereafter) proposed that GaN:Mg has two acceptor states with distinct properties: firstly, a 
highly non-effective-mass-like acceptor state (the deep ground state, DGS) with a hole localized in one p-orbital 
of a N neighbour in the basal plane; secondly, an effective-mass-like shallow transient state (STS)7. Lyons et al. 
later proposed that MgGa does not exhibit conventional shallow acceptor behaviour, but is characterized by a 
highly localized hole with most of the charge located on an axial N nearest neighbour8. On the experimental side, 
Callsen et al. recorded excitation-wavelength- and temperature-dependent photoluminescence (PL) spectra of 
GaN:Mg and determined donor and acceptor binding energies, localization and activation energies9. Based on 
these findings, they endorsed the L-Z model with experimentally determined binding energies of 164 ±​ 5 and 
195 ±​ 5 meV for the STS and DGS states, respectively. More recently, Davies proposed, on the basis of an analysis 
of magnetic resonance studies, that STS can form only in strain-free regions of material, whereas DGS occurs in 
strained regions; for DGS, the hole is localized in a p-like orbit of a basal N atom10. Since there is only a small dif-
ference between parallel and perpendicular components of the optically detected magnetic resonance g-values, as 
expected for a deep acceptor, Alves et al. concluded that the hole spreads equally among all four N neighbours11.

Thus, there is strong disagreement about the existence, or not, of two Mg acceptor states in GaN, the influence 
of strain and the hole localization in the DGS state7–13. In this manuscript, we introduce a different experimental 
approach to address these important issues.
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Although the 4 f electrons of rare earth (RE) ions are strongly localized, the weak perturbation caused by the 
local crystal field of a given host crystal determines the spectral fine structure of the sharp intra-4f transitions by 
splitting the ground state 7FJ and excited state 5DJ multiplets14–19; in particular, the energy level shifts and splitting 
of Eu3+ in GaN are very sensitive probes of the local crystal field symmetry19. The PL spectrum of Eu3+ implanted 
into Mg-doped GaN reveals a set of emission peaks completely different from those observed most frequently in 
n-type GaN, viz. Eu2 (EuGa, the unassociated ‘prime’ defect17) and Eu1 (EuGa-X, where X is a lattice defect15). The 
spectrum dominant at room temperature in GaN(Mg):Eu has been labelled Eu0. Its associated defect centre, an 
RE ‘site’, also called Eu0, comprises a single Mg atom in close association with an Eu2 defect19.

Upon cooling a sample of GaN(Mg):Eu, the PL spectrum shows a striking transformation: as the temperature 
decreases below 40 K, the intensity of Eu0 decreases rapidly, contrary to normal behaviour, while an Eu1-like 
spectrum rises to replace it (see Fig. 1); this photochromic transformation was attributed to the structural insta-
bility of the Mg acceptor in GaN, an actual displacement of the associated Mg atom leading to a switch from a 
low-symmetry Eu0 spectrum to a more symmetric one, Eu1(Mg)18,19. In the present study, we use Eu3+ as a ‘spec-
tator ion’ to probe the nature of Mg acceptor states in GaN. We investigate the dynamics of the transformation of 
Eu0 to Eu1(Mg), at a number of fixed temperatures below 50 K, as a function of excitation density. These studies 
allow a ‘dynamic’ interpretation of the temperature-dependent switching described in previous work18,19.

Results
To study the photochromic dynamics systematically, we cool a sample in the dark to a set temperature between 
12.5 and 45 K, allow it to stabilize for 30 min and then illuminate the sample. Despite the low temperature, the 
initial spectrum will be dominated by the unstable configuration Eu0. The return to equilibrium, with the spec-
trum dominated by Eu1(Mg), is monitored by recording a kinetic series of spectra, with a short acquisition time 
of 0.1 or 0.25 s, for time periods up to 1000 s after light onset. In this experiment, the exciting light simultaneously 
induces the observed switching and monitors it by PL spectroscopy.

The 5D0 and 7F0 levels of Eu3+ are singlets and the 5D0 →​ 7F0 (hereafter, 0-0) transition of any particular defect 
will show no line splitting. Figure 2 shows, in 3D representation, a plot of PL signal vs. wavelength vs. time, 
in the narrow 0-0 wavelength region from 586.5 nm to 589.5 nm, monitored at 18.5 K under 10 mW/cm2 laser 
excitation. The initial spectrum (t =​ 0.1 s) shows only a peak at ~587 nm corresponding to the 0-0 transition of 
the Eu0 defect, which provides the first indication of a substantial energy barrier to the transformation between 
the different configurations of the Eu-Mg defect in the dark. This peak fades rapidly with illumination time while 
a new peak, corresponding to the 0-0 transition of Eu1(Mg), appears at 588.9 nm. With further passage of time, 
the Eu1(Mg) defect signal completely replaces that of Eu0 within the noise level. When Eu0 and Eu1(Mg) are 
both present, a line with resonance behaviour (labelled ‘res’) appears near 588.6 nm, at first rising and then falling 
in intensity. The ‘res’ line is related to an intermediate metastable state and its intensity can be modelled as the 
product of Eu0 and Eu1(Mg)18. In time resolved photoluminescence switching, the intensity of ‘res’ line is found 
to be stronger at lower temperature, where the Eu0 to Eu1(Mg) transformation occurs on a shorter time scale. The 
inset to Fig. 2 compares the normalized PL signal of 0-0 transitions of Eu0 and Eu1(Mg) as a function of time, and 
shows that the decline of Eu0 is matched by the growth of Eu1(Mg). This confirms that Eu0 and Eu1(Mg) are two 
configurations of the same Eu-Mg defect.

Figure 3 compares the decay of the Eu0 PL signal as a function of (logarithmic) time under 10 mW/cm2 laser 
excitation at three different temperatures, 18.5 K, 30 K and 40 K. Attempts to fit these data using exponential 
functions gave extremely poor fits, especially towards longer times, where the exponential function shows a com-
paratively sharp decay. On the other hand, a hyperbolic function:

τ= ∞ + − ∞ +I t I I I t( ) ( ) ( (0) ( ))/(1 / ) (1)

fits the data very well. τ is the time required to reduce the initial signal (I(0) −​ I(∞​)) by a factor of 2 above the 
background level I(∞​) ~ 0. At times much longer than the characteristic time τ of Eqn. (1), the signal decreases 

Figure 1.  Mean PL Signal of 5D0 → 7F0 transition of Eu3+ for Eu0 and Eu1(Mg) configurations of Eu-Mg 
defect as a function of temperature under ~1 mW/cm2 excitation showing hysteretic photochromic 
switching between Eu0 and Eu1(Mg) configurations. 
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as 1/t. That τ increases with increasing temperature seems counterintuitive at first; we expect thermally activated 
processes to quicken at higher temperature. However, our experiments monitor a return to equilibrium from an 
unstable state. The increase of τ with temperature reflects the fact that the Eu0 defect is more stable at higher 
temperatures than is Eu1(Mg). By the same token, our determination of the activation energy by the stand-
ard fitting procedure for temperature dependences yields a negative value: the Arrhenius plot of Fig. 4 shows 
that τ is thermally activated above 25 K, with activation energies of 27.4(2), 27.2(5) and 28.5(9) meV measured 
using excitation densities of 1, 10 and 100 mW/cm2, respectively, and decreases with increasing excitation den-
sity. Below 25 K, τ is independent of temperature and averages 4.2, 1.1 and 0.33 s for excitation densities of 1, 10 
and 100 mW/cm2, respectively. The measured activation energies agree within experimental error and average 
~27.7(4) meV. This value is reasonably similar to the crossover energy barrier (~20 meV) estimated by L-Z for the 
STS to DGS transition7.

Figure 2.  Showing a kinetic series of 300 PL spectra (5D0 → 7F0 transitions of Eu3+) under ~10 mW/cm2 
excitation at 18.5 K (see text). The photochromic switching of Eu0 (587 nm) to Eu1(Mg) (588.9 nm) takes 
place in about 1 s. The inset shows that normalized PL signals of the Eu0 and Eu1(Mg) configurations are 
complementary in time.

Figure 3.  Showing the time evolution of mean Eu0 PL signal under 10 mW/cm2, 355 nm excitation at 18.5, 
30 and 40 K. The solid lines show fits to Eqn. 1 with the characteristic times τ as indicated.
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Discussion
We proposed in earlier work that carrier freeze-out at low temperatures drives a lattice distortion, leading to the 
Eu0 to Eu1(Mg) transformation18. The transformation between Eu0 and Eu1(Mg) shows hysteretic behaviour: it 
occurs on sample cooling below 40 K, but it does not reverse on warming until the temperature rises above 130 K 
(see Fig. 1). During warming, the ionization of deep Mg acceptors above, say, 130 K results in a rapid increase 
in the mobile hole concentration: we suggested that it is the increase in the free hole population that triggers the 
reappearance of Eu018,19. In light of the new results, it is clear that a state of dynamic equilibrium determines the 
balance of the Eu0 and Eu1(Mg) populations at all temperatures. At higher T, the photochromic switching from 
Eu0 to Eu1(Mg) is predicted to be extremely slow, taking many hours or even days at room temperature, depend-
ent on excitation density. On lowering the temperature, switching is only observed at the point where the char-
acteristic switching time τ is comparable in magnitude to the experimental data acquisition time. In this sense, 
cooling the sample tunes it into an experimental region where switching becomes observable. Further cooling 
decreases τ further towards a limiting value below 25 K and makes switching inevitable.

It is important to mention at this point that two other models from the literature20,21 purport to explain tem-
perature dependent switching of Eu-Mg defects; both of these models are incomplete in the sense that the authors 
have not recorded PL spectra during both a cooling and a warming run, which is essential to observe the hysteretic 
photochromic switching and necessary to describe its mechanism. In the first model, Lee et al.20 recorded PL spec-
tra of GaN(Mg):Eu during a warming run and observed the anomalous growth of Eu0 emission. They describe 
the decrease in Eu1(Mg) (their peak B) PL intensity with increasing temperature as a typical temperature depend-
ent PL behaviour of GaN:Eu and propose that the increase in PL intensity of Eu0 (peak A), up to 180 K, during 
warming, might be due to an increase in energy transfer efficiency from the host to the Eu0 defect. In the second 
model, Mitchell et al.21 propose that Eu0 (their Mg/Eu1) defect results from a coupling of a magnesium hydrogen 
(Mg-H) complex with Eu in GaN(Mg):Eu, and that under indirect or resonant excitation below 60 K, vibrational 
energy triggers H migration and modifies the complex which results in a transformation of the spectrum. They 
further report that such switching will not occur below a threshold excitation intensity nor at elevated tempera-
tures, an observation consistent up to a point with our result that the characteristic switching time increases with 
increasing temperature and decreasing excitation intensities. Since, however, both models fail to reflect the 1:1 
switching suggested by Fig. 2 and also neither acknowledge nor account for the reverse switching and the hyster-
esis observed in our experiments, we rule them out. Furthermore, we do not expect a significant presence of H in 
our samples after high temperature and high pressure annealing at 1673 K and 1 GPa of N2.

We now extend our model18,19 in terms of the most likely disposition of Eu and Mg atoms in GaN in both 
configurations of the Eu0/Eu1(Mg) defect, according to the following considerations (see Fig. 5): (1) Eu and Mg 
impurities prefer Ga substitutional sites22–24; (2) the Eu0/Eu1(Mg) defect comprises a single Mg atom in close 
association with an Eu2 defect18; (3), Eu0 to Eu1(Mg) photochromic switching is related to the structural insta-
bility of the Mg acceptor in GaN18,19; (4) crystal field theory, applied to the 7F1 multiplet of Eu0, suggests a strong 
non-axial distortion19 which indicates that Mg might be linked through non-axial nitrogen to the spectator Eu3+ 
ion; (5) the emission lines, especially those of Eu1(Mg), are very sharp, indicating the presence of definite sites 
rather than a distribution. It is also important to mention that while there may be some interstitial Mg impurity in 
the crystal, as suggest by recent theory13, we do not believe it plays a part in the constitution of the Eu0/Eu1(Mg) 
defect. The larger atomic size of Eu results in a longer Eu–N bond (~2.25 Å) in comparison to Ga–N (~1.95 Å)22, 
which further diminishes the probability of occupation of interstitial sites by Mg in this case.

In the STS configuration of the Mg acceptor in GaN, all Mg–N distances are practically identical (~2.05 Å), 
whilst in DGS, a Jahn-Teller distortion displaces the N atom hosting the hole to a much larger separation (2.23 Å) 
from Mg than the other three N atoms (~2.02 Å)7. In Eu-activated GaN, without Mg, EuGa association with an 
intrinsic defect changes the peak position of the principal 5D0 →​ 7F2 transition line from 621 nm (Eu2) to 622 nm 
(Eu1)15,17. Theoretical calculation suggests that the association of VN with EuGa (axial or basal pairs) results in 
a quite pronounced relaxation of the structure, with Eu displaced by ~0.14–0.23 Å from the crystal c-axis22. As 
Eu1(Mg) and Eu1 show rather similar peak positions19, we expect a similar crystal distortion. As we observed a 
complete conversion of Eu0 to Eu1(Mg), we need to consider that the hole is localized to the N atom linked with 

Figure 4.  The Arrhenius plot (ln(τ) vs. inverse temperature) of Eu0/Eu1(Mg) switching at 3 different 
excitation densities. 
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Eu. As discussed above, the crystal field splittings of 7F1 multiplets of the Eu0 defect suggests that the Mg atom, 
which associates with EuGa (Eu2) to form the Eu0 defect, links through a non-axial nitrogen to the spectator Eu3+ 
ion. Now there are two possibilities: (1) the Mg atom sits at a Ga site along the c-axis (as in our model) and the 
DGS hole localises on a N atom axial w.r.t. to the Mg atom; (2) the Mg atom sits in a plane perpendicular to the 
c-axis and the hole localises on a N atom non-axial (basal) w.r.t. the Mg atom. In the second case, since there 
would be equal probability that hole localises to any of the three non-axial N atoms linked to Mg, the probability 
of an Eu0 to Eu1(Mg) transition would be 1/3. Since we observe a complete conversion of Eu0 to Eu1(Mg), we can 
easily discount this second possibility.

We conclude that in GaN(Mg):Eu at low temperatures the DGS hole is localized on a N atom that is axial 
to Mg. Our findings support the claim of Lany and Zunger7, Callsen et al.9 and Davies10 that there are both STS 
and DGS acceptor states in Mg-activated GaN, but it does not support their claim that in DGS the hole is local-
ized on a basal N atom7,10. An axial hole assignment emerges in more recent theoretical studies by Lyons et al.8, 
Buckeridge et al.12 and Miceli and Pasquarello13. It is important to note further that Callsen et al.9 reported a third 
acceptor state ABX2 (ascribed by them to an unknown impurity) which may bear the same ‘synonymity’ to the 
resonance peak in our experiment as the ABX1 and ABX3 lines bear to Eu0 (STS) and Eu1(Mg) (DGS).

In summary, our results are compatible with the existence of STS and DGS acceptor states in Mg-doped GaN. 
The findings of this and previous work suggest that the hole in DGS is localized in an axial Mg-N bond. The acti-
vation energy for the Eu0 to Eu1(Mg) transformation is found to be ~27.7 meV, very close to the crossover energy 
barrier (20 meV) estimated for the STS to DGS transition in the L-Z model. Our work also provides a dynamic 
way of looking at the photochromic transition between configurations of the same dominant defect in doubly 
doped GaN(Mg):Eu. It indicates that the Eu0 to Eu1(Mg) transition rate can be effectively tuned by changing 
temperature and excitation density. Now we can look forward to studying the role of excitation wavelength on 
Eu0 to Eu1(Mg), hence STS to DGS, transformation. We will also study the reverse transformation of Eu1(Mg) 
to Eu0 during the warming half-cycle of the hysteresis loop, in order to seek more information regarding the hole 
ionisation process from the DGS and to deepen understanding of various metastable states of GaN(Mg):Eu which 
have great potential academic and technological significance.

Methods
Sample preparation.  A GaN layer, 2 μ​m thick, grown on a 2-inch sapphire wafer by metalorganic vapour 
phase epitaxy, was doped in-situ to a concentration of 1.1–1.2 ×​ 1019 Mg cm−3, as verified by secondary ion 
mass spectrometry. The wafer was sectioned into 1 cm2 samples and implanted with various fluences of Eu 
(8 ×​ 1012 cm−2@70 keV, 1.7 ×​ 1013 cm−2@150 keV and 6 ×​ 1013 cm−2@380 keV) along the surface normal, in order 
to produce an approximately uniform Eu concentration of 1 ×​ 1019 at/cm3 from 20 to 75 nm below the sample 
surface. The sample was annealed at high temperature (1673 K) and high pressure (1 GPa of N2) to repair crystal 
damage created during implantation, to activate Eu-related emission and perhaps also to generate Eu0 centers. 
During annealing, the sample surface was covered with bulk GaN crystallites to prevent out-diffusion of nitrogen.

Figure 5.  Showing the likely disposition of the Mg-Eu defect in Ga(Mg)N:Eu; on the right, the nanoscale 
phase changes that occur during the Eu0 to Eu1(Mg) transformation, with bond lengths taken from ref. 7. 
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Optical measurements.  PL measurements were carried out in a closed-cycle helium cryostat (base temper-
ature 12.5 K) with sample excitation by a 355 nm CW laser (with maximum output of 20 mW in a 1.5 mm spot), 
which is shorter than the absorption edge even at low temperature. The incident light intensity was controlled by 
inserting calibrated neutral density filters in the beam path. Sample luminescence was dispersed by a ⅔-m spec-
trometer and recorded using a cooled 1024 ×​ 127 pixel CCD camera.
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